Reservations for compute resources in federated
e-infrastructure

Marcin Radecki®, Tadeusz Szymocha!, Tomasz Piontek?, Bartosz Bosak?,
tMariusz Mamoniski?, Pawel Wolniewicz?, Krzysztof Benedyczak® and
Rafal Kluszczytiski®

1 ACC CYFRONET AGH, Nawojki 11, P.O. Box 386, 30-950 Krakéw 61, Poland
tadeusz.szymocha@cyfronet.pl
2 Poznaii Supercomputing and Netorking Center, Institute of Bioorganic Chemistry
of the Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznaii, Poland
3 University of Warsaw, Interdisciplinary Center for Mathematical and
Computational Modelling, Pawiriskiego 5a, 02-106 Warszawa, Poland

Abstract. This paper presents work done to prepare compute resource
reservations in PL-Grid Infrastructure. A compute resource reservation
allows user to allocate some fraction of resources for exclusive access,
when reservation is prepared. That way the user is able to run their job
without waiting for allocating resources in a batch system.

In PL-Grid infrastructure reservations can be allocated up to amount
negotiated in PL-Grid grant. One way of getting reservation is alloca-
tion by resource administrator. Another way is to use predefined pool
of resources accessible by various middleware. In both approaches once
obtained, reservations identifiers can be used by middleware during job
submissions. Enabling reservations requires changes in middlewares. The
modifications needed in each middleware will be described. The possible
extension of existing reservation model in PL-Grid infrastructure can be
envisaged: reservation usage normalization and reservation accounting.

The reservations are created and utilized in the user’s context so there
must be a way to pass the reservation details from the user-level tools to
a batch system. Each of PL-Grid supported middleware, namely gLite,
UNICORE and QosCosGrid, required adaptations to implement this
goal.

Keywords: QosCosGrid, UNICORE, gLite, advance reservations, co-

allocation of resources

1 Introduction

The scheduling of computing jobs at HPC clusters may be done in different ways
according to the resource provider policy:

— advance reservations when user needs resources (limited to a single system,
location) for a specific time span in future

— co-scheduling when simultaneous access to resources that are part of different
logical systems (or locations) is required.

— on-demand scheduling when jobs for a time-crucial application should be run
as quickly as possible. The existing jobs are let to finish or running jobs may
be preempted to allow new job to start.

— workflows when jobs have dependencies between them and one job is wait-
ing for output of other job (e.g. visualisation job should start after core
computations have finished)

The scientists usually need computational resources to perform complex the-
oretical calculations. In most cases typical submission of a job to the queuing
system is sufficient. The computations are done on shared resources at not ex-
actly predictible time in future. But for some use cases it may be required to
run jobs without waiting in a batch system queue, at exclusive resource or/and
at specific time in future.

The PL-Grid infrastructure is supporting advance reservations, workflows
and in limited extent co-scheduling. The QCG middleware has pre-agreed pool
of reserved resources that provides to users for global co-scheduling mechanism
based on advance reservations at every PL-Grid infrastructure computer center.

The advance reservations are ,,expensive” meaning that a reserved resource
cannot be used by other users and if not occupied by jobs, may be considered a
not optimally use of resource. For this reason the accounting of resevations needs
to be in place to efficiently manage user request. Thus the advance reservations
are covered by the PL-Grid grant system. User may apply for a grant in which he
declares that advance reservation will be needed and specifies the general values
for size, time-span and recurrence of the reservation. Then, while grant is active,
user can apply for setting the reservation in advance, which is then manually set
by system administrator. User is informed about reservation identifier and can
specify it in his own scripts or middleware tools. There is also some cost incurred
by freeing resources needed for a reservation. This is more substantial for a large
reservations and is similar to freeing resources for executing a many-CPU job,
however in PL-Grid infrastructure we decided to neglect this kind of cost.

Acknowledgement

This publication was published as a part of the eScience on Distributed Com-
puting Infrastructure book. The final publication is available at http://1link.
springer.com/chapter/10.1007/978-3-319-10894-0_6

2 Related work

Advance reservation is of iterest to users of different existing IT infrastructures.
The need of advance reservation was tackled also by I. Foster et al. and yielded in
proposition of the Globus Architecture for Reservation and Allocation (GARA)

[1].

Parallel to European infrastructure the United States infrastructure was de-
veloped within the TeraGrid and its continuator the Extreme Science and En-
gineering Digital Environment (XSEDE) [2] project. The metascheduling Re-
quirements Analysis Team (RAT) recommended evaluation of tools faciliting
reservations management [3]. However, authors were not able to reach public
documents describing technical implementation. The RAT indicated the Highly-
Available Resource Co-allocator (HARC) [4] as recommended for further evalu-
ation in TeraGrid project. The goal of HARC is to provide co-allocation service
for metacomputing and workflow applications, where diferent types of resources
are reserved as they were single, indivisible resurce. So the allocation process
reminds database transaction.

An interesting approach of dealing with the issue of resource reservation
at a middleware layer is use of a pilot jobs framework as presented in [5]. A
pilot job occupies a resource and pulls down some other job to be executed at
this resource. This way it is possible to avoid interaction with a batch system
mechanisms for resource reservation which may be troublesome having in mind
a variety of batch systems in grid environment, but currently (2014) it is not
used in PL-Grid infrastructure.

3 The Grid Resource Allocation and Agreement Protocol

The Grid Resource Allocation and Agreement Protocol working group (GRAAP-
WG) [6] of the Global Grid Forum (GGF) defines methods and means to estab-
lish Service Level Agreements between different entities in a distributed envi-
ronment. Advance reservation is one of the defined scenarios.

GRAAP-WG defines advance reservations scenario as to perform job sub-
mission within the context of an existing (or advance) reservation of capability
or pre-established resource preferences. The difference from the simple job sub-
mission is that the user knows that he has an ongoing relationship with the
job hosting service, and can expect his job offer(s) to be accepted as long as
the requested parameters are kept within certain limits set by the relationship.
For example, the reservation might guarantee availability of a certain kind of
resource on a certain schedule, or with a particular cost model. Reservation is
an abstraction for understanding this refined expectation about the handling of
future jobs; whether the job hosting service uses preemption, predictive models,
or the literal setting aside of resources is an implementation decision for the
service. Another use of pre-established agreement is to specify resource prefer-
ences, e.g., choice of nodes with a certain amount of memory over others, via an
agreement, that are to be used in all subsequent resource allocation to incoming
jobs in the context of this agreement.

GRAAP-WG proposes an architecture comprising two main layers: the Agree-
ment layer and the service provider layer. The Agreement layer implements
the communication protocol used to exchange information about Service Level
Agreements and defines its specification. The reservation and allocation request
is issued by the agreement initiator. The Agreement layer is responsible for

ensuring that the guarantees defined in the contract - the Agreement - are en-
forced by a suitable service provider. In addition, the Agreement layer defines
the mechanisms :

— to expose information about types of service and the related agreement of-
fered (the Agreement templates);

— to handle the submission of service requests (the so-called agreement offers)
and submit them to the Agreement layer. One offer needs to comply with
at least one template exposed by the Agreement provider to which it is
dispatched, and it has to meet the agreement creation constraints specified
in the corresponding Agreement template.

The Agreement layer relies on service providers. An Agreement is successfully
created if one or more service providers are able to enforce the guarantees asso-
ciated with it. The service provider is responsible for supervising the status of a
pool of resources and of enforcing the agreed guarantees associated with them.
Each Agreement Factory can interact with one or more service providers. The
actual enforcement mechanisms supported by a given service provider, depend
on the type of technology the provider supports.

Generally speaking, not all the resource instances in one Grid infrastructure
need to support service providers for reservation and allocation. The possibility
to do reservation and allocation depends on the type of technology the resource
is based on.

4 Results

The reservations in PL-Grid infrastructure are delivered based on following pol-
icy. In order to allocate reservation on resources the request for it should be
registered in PL-Grid grant system. Then, after PL-Grid grant is active, user
can apply for preparation of reservation. User specifies number of reserved slots
and time of reservation (Max. res. total walltime). The agreed reservation allows
user to request reservation up to defined in PL-Grid grant system limits defined
during application for grant. There are restrictions in delivery of reservations due
to local resource provider policy: for example minimum number of slots requried,
minimal walltime required or period of inactivity of user. The reservation can
be cancelled, but user is charged for the time the reservation was active. The
reservation time is accounted as if the resources are used all the declared time
by the user.

4.1 Reservations in gLite

Using LRMS and VOMS Based Reservations with gLite. The schedul-
ing methods mentioned in Introduction form different requirements for service
providers and resource managements systems.

Co-allocation is not supported in gLite, although there is a proposed exten-
sion to gLite architecture (see below).

Exclusive access to resources can be guaranteed by specifying in Job De-
scription Language (JDL) job description file attribute WholeNodes=yes . The
WholeNodes attribute indicates whether whole nodes should be used exclusively
or not.

Most LRMS support advance reservation, but even if a user or a Virtual
Organization (VO) manually agree reservation with sites, it is impossible to
request a specific reservation identifier (ID) in JDL job description. JDL schema
does not allow to specify additional parameters to be passed to LRMS. Another
problem is that user accounts are assigned dynamically by LCMAPS therefore
there is no guarantee that the users can access reserved resources as they can be
mapped to another account. Static mapping is possible but not recommended.
It is possible to create reservations for a Unix group, but then all users from VO
group mapped to these user account can access the reservation.

As glite is strictly bound to Virtual Organisation concepts, it is recom-
mended to use VO to manage users and their privileges with VOMS [7]. VOMS
allows for elastic users management and users can have assigned specific roles,
groups and attributes. This can be used to reserve some resources for some users
by mapping different groups to different resources or can be used to specify a
share in the resources by assigning different share and priority to groups. In site
configuration VOMS groups should be statically mapped to UNIX GIDs on CEs,
LRMS shares are defined statically according to UNIX GIDs. This approach is
simple but static. It allows VO manager to dynamically assign individual users to
different groups in VOMS, but changes in share assignment have to be arranged
manually between VO manager(s) and sites. Dynamic share approach was imple-
mented in GPBOX [8] which was a tool that provided the possibility to define,
store and propagate fine-grained VO policies. It allowed to map users to service
classes and to dynamically change the association between users and classes.
Successors of GPBOX are AuthZ and Argus [9]. The working principle is sim-
ple. The Argus Authorization Service renders consistent authorization decisions
basing on authorization policies defined in XACML. The Policy Administration
Point (PAP) provides the tools to author authorization policies. The policies are
then automatically propagated to the interested entities where these are evalu-
ated by a Policy Decision Point (PDP) and enforced by a Policy Enforcement
Point (PEP). The VO managers define Group, Roles and capabilities within a
VO. Then their assign users to groups and grant them the possibility to ask
for roles. (e.g. /vo.plgrid.pl/normalpriority, /vo.plgrid.pl/highpriority). The site
administrator on his side defines a set of policies defining the mapping between
service classes (e.g. low, medium, high), local unix groups and LRMS shares.
VO manager define policy for defining mapping between groups/roles and pre-
defined service classes and this policy can be changed dynamically. XACML
semantics allow much more complex policies not just related to fair share, e.g.
for usage quota. By using VO groups, policies and additional VOMS attributes
it is possible to implement PL-Grid grants concept in gLite.

gLite Implementation of Grid Resource Allocation and Agreement
Protocol. The gLite Reservation and allocation architecture was proposed [10],
based on the agreement initiator, agreement service, agreement offer and service
provider concepts defined by the Grid Resource Allocation and Agreement Pro-
tocol working group of the GGF. An agreement initiator uses the agreement
service to obtain appropriate agreements with reservation and allocation service
providers, which are typically co-located with physical or logical resources. In
the gLite architecture, agreement initiators would include the workload manage-
ment system (WMS), the data scheduler (DS), and the user; while reservation
and allocation service providers would be associated with the logical represen-
tation of physical resources: the computing element (CE), the storage element
(SE), and the network element (NE). Attributes defining reservation and co-
allocation requests need to be specified in the agreement template/offer, which
is initially expressed in JDL. Later on, during the translation to XML attributes
are placed in Terms section of the agreement offer [WS-AG] and can belong
to two alternative sub-sections depending on their nature: the Service Descrip-
tion Terms (SDTs) and Service Properties sub-sections. The Terms section pro-
vides a quantitative description of the service requested. Both SDTs and Service
Properties need to be mapped to corresponding JDL attributes. Agreement tem-
plate/offer expressed in JDL can specify general attributes Type (reservation,
allocation or coallocation), ServiceCategory (computeElement, networkElement,
storageElement) and Functionality (e.g. virtualLeasedLine, spaceManagement,
bulkTransfer). For each functionality a set of specific attributes can be specified,
e.g. DurationTime, SizeOfTotalSpaceDesiredInBytes, Bandwidth, FileTransfer-
EndTime.

The proposed extension was not yet implemented in Workload Management
System WMS [11] and computing elements like CREAM.

4.2 Advance Reservation and Co-allocation of Resources
Capabilities in QosCosGrid Middleware

The QosCosGrid (QCG) middleware [12][13] is an integrated system, offering
advanced job and resource management capabilities to deliver to end users
supercomputer-like performance and structure. By connecting many distributed
computing resources together, QCG offers highly efficient mapping, execution
and monitoring capabilities for variety of applications, such as parameter sweep,
workflows, multi-scale, MPI or hybrid MPI-OpenMP. However, for many appli-
cation scenarios the typical best-effort model to accesss computational resources
is not satisfactory, and they require more advanced one, guarantying the re-
quested level of quality of service. Addressing such requirements QCG, as a first
grid middleware offering access to PL-Grid resources, has exposed advance reser-
vation capabilities of the underlying Local Resources Management Systems to
end-users.

Researchers can benefit from advance reservations offered by QCG in many
ways. Firstly, the advance reservation can be directly used to book in advance
resources for a specific period of time. The scenario corresponds to the situation

in which the scientist wants to perform series of experiments in known a priori
time frame. The time is here usually determined by any event. For example, the
access to resources must be synchronized with availability of some equipment,
date of presentation or lecture. To the created in such a way reservation one can
later submit many tasks to be started without typical delay caused by waiting
in a queue.

While requesting for the reservation a user can specify a list of potential
resources (so called candidate hosts) as well as resource and time requirements.
QCG can automatically search over all candidate hosts, within user-defined time
window, for free resources and for the requested period of time. With QCG it is
possible to reserve either given a number of slots located on arbitrary nodes or
to request for particular topology by specifying number of nodes and slots per
node.

At present, the advance reservations can be created and managed using
command-line tools (the QCG-SimpleClient client) or graphical, calendar like,
QCG-QoS-Access web application (the Reservation Portal) [14]. Both these tools
are clients to the QCG-Broker service and can be used to create new reservations
as well as to manage existing ones.

In the QCG-QoS-Access portal, a user can create new reservation with the
intuitive dialog in which he can specify all requirements and preferences - see
Figure 1. The created reservations are displayed in the portal in a form of a list,
where each position includes information about current status of reservation as
well as provides a report about reserved resources. If user wants to resign from
a reservation, he can cancel it and release blocked resources.

Create Reservation ®
Time Window: Reservation information
stat (20 =) : [56 =] [014 70201 4] B D R13B8790325263_RESERVATION_6452
| H ‘ H ‘ | Starttime: Fridan 17 20:56:00 GMT+0100 2014
2] = A Endtime: Fridan 17 21:57:00 GMT+0100 2014
End [17 | [ss [[o1neno14] Ena o Fridant72
Reservation Duration: Slots: 6
Resources:
Hours | 1 H Minutes | 00 '%' gln?" gnva wesswroc pl
ots:
Resources: Local ID R5932605
Nodes: 2

Cluster [novawess wrac.pl [-] Node: wn296 Slots: 3
Node: wn3od Siots: 3

() Reserve Slots: 1
(=) Reserve Nodes: Slots per Mode

Create Reservation H Close |

Fig. 1. The QosCosGrid reservation portlet

Creation and management of reservations can be also performed using QCG-
SimpleClient. The QCG-SimpleClient is a set of command line tools, inspired by

the simplicity of batch system commands. The tools are dedicated to end-users
familiar with queuing systems and preferring command line interface over graph-
ical or web solutions. The learning effort needed to start using QCG-SimpleClient
is relatively small as the commands are modeled after the ones known from
batch systems. The qcg-* command-line tools allow a user to submit, control
and monitor jobs as well as to create and manage reservations. The complete
list of commands can be found in [12]. In the context of advance reservation, the
following tools are particularly important:

— qcg-reserve creates reservation and returns its identifier

qeg-rcancel - cancels the given reservation(s)

— qcg-rinfo - displays comprehensive information about the given reservation(s)
qcg-rlist - lists reservation in the system meeting defined criteria.

Every reservation request has to be described in a formal way. The default de-
scription format supported by QCG-Client is QCG-Simple. The format does not
allow yet to describe more sophisticated scenarios like co-allocation of resources
(supported by the XML format called QCG-JobProfile), but is fully sufficient for
most of typical cases. The QCG-Simple format description file is a plain BASH
script annotated with #QCG directives what is also a common approach for
all modern queuing systems. The #QCG directives inform the system how to
process the task and, in case of the reservation, about user’s requirements and
preferences. Listing 1 presents an example of a QCG-SimpleClient reservation
request for 4 slots on nowva cluster for one hour on 2014.01.25 between 8am and
4pm.

#QCG host=nova
#QCG walltime=PT1H
#QCG procs=4

#QCG not-before=2014.01.25 8:00
#QCG not-after=2014.01.25 16:00

Listing 1: An example of a QCG-Simple reservation description

Detailed information about the created reservation can be obtained with qcg-
rinfo. The output of this command for our example reservation is presented in
Listing 2.

In contrary to the scenario presented above, in which creation of reservation
and submission of jobs to it are separated steps, QCG supports also the scenario
where reservation is created especially for a job as a part of submission process.
This approach allows to provide the requested level of quality of service with
granularity of single task and to automate the process of managing resources. In
such a case the reservation directives extend directly the task description, while

qcg-rinfo R1389951946104__2181

UserDN: /C=PL/0=PL-Grid/0=Uzytkownik/0=PCSS/CN=Tomasz Piontek/CN=plgpiontek
SubmissionTime: Fri Jan 17 10:45:46 CET 2014

DescriptionType: QCG_SIMPLE

StartTime: Sat Jan 25 08:00:00 CET 2014

EndTime: Sat Jan 25 09:01:00 CET 2014

Status: RESERVED

TotalSlotsCount: 4

InUse: false

HostName: nova.wcss.wroc.pl
ProcessesGroupld: qcg
SlotsCount: 4
LocalReservationId: R5949627
Node: wn448 SlotsCount: 2
Node: wn452 SlotsCount: 2

Listing 2: An example output of qcg-rinfo command

the created reservation is automatically canceled by the system at the end of
task execution.

Except direct usage of advance reservation by end-users it can be also ex-
ploited internally by QCG services for more advanced scenarios like cross-cluster
execution of parallel or multi-scale applications. For such applications distri-
bution across many resources may be required by two reasons. The first one
is related to the heterogeneous resource requirements of processes constituting
an application, what is tightly connected with the QCG support for groups
of processes and communication topologies. The second one addresses problem
of decomposition of big task between many resources to enable more complex
problem instances, decrease cluster “defragmentation” and to improve resource
utilization on the whole system level.

The reservation mechanism is applied in the scheduling process to co-allocate
resources and then to synchronize execution of application parts in a multi-
cluster environment. QCG supports both the strict and best-effort approaches
to resource reservation. In the former approach, resources are reserved only if
user’s requirements can be fully met (also known as the all or nothing approach),
whereas in the the latter case, the system reserves as much resources as possible,
but gives no guarantee that all requested resources (cores) will be available. This
feature allows to construct flexible algorithms of processes allocation, in which
a whole group of processes can be assigned to a single node or even distributed
across many clusters.

QosCosGrid successfully integrates various services and aforementioned tools
to deliver to PL-Grid users an e-Infrastructure capable of dealing with various
kinds of computationally intensive simulations, including ones that require the
requested quality of services. The high-level architecture of the QCG middle-

10

ware is shown in Figure 2. In general, the middleware consists of two logical
layers: grid and local one. The basic advance reservation capabilities are offered
by the local-level QCG-Computing service, usually deployed on access nodes
of batch systems (like Torque or SLURM). The service provides remote access
to capabilities of local batch systems. The job submission capabilities of QCG-
Computing are exposed via an interface compatible with the OGF HPC Basic
Profile [15] specification, while the integration with a queuing system is realized
using DRMAAJ16]. As the first version of DRMAA specification does not ad-
dress the advance reservation approach, the QCG-Computing specific interface
(with a dedicated description language) was proposed to support this capability.
Currently, in QCG, advance reservations are created by calling LRMS scheduler
commands directly, while in the future leverage of Advance Reservation API of
Open Grid Forum DRMAA 2.0 [17] specification is planned. What is important
flexible configuration allows the local system administrators to keep the full con-
trol over resources that can be reserved limiting for example advance reservation
capabilities only to single system partition.

QCG-QoS-Access

Reservation Portal

QCG-Client

User Tools

QCG-Broker

Grid-level Services

QCG-Computing QCG-Computing

Cluster-level services

Fast Link

Infrastructure

Fig. 2. The QosCosGrid middleware architecture

More advance scenarios like reservations in multi-cluster environment and
co-allocation of resources are supported by the grid-level service, called QCG-

11

Broker, which benefits from QCG-Computing capabilities for a single cluster.
The QCG-Broker service, using the adaptive mechanism to determine a time
window for a reservation, tries to allocate resources on machines meeting user’s
requirements. In order to gather the requested amount of resources, the proce-
dure of selection is performed in a loop. If the amount of reserved resorces is not
satisfactory the resources are released and the whole procedure is repeated for
the next time window.

Within the MAPPER project [18], the QosCosGrid stack has been integrated
with the MUSCLE library [19] enabling cross-cluster execution of so-called multi-
scale applications. The common multi-scale application consists of number of
single-scale modules that calculate some phenomena on different spatial or tem-
poral scales and simultaneously exchange information with each other. Since the
elementary modules can be written in different languages and have different re-
source requirements, the QosCosGrid ability to combine many clusters into the
single virtual machine is crucial.

4.3 Reservations in UNICORE

UNICORE [20] server side included basic resource reservation support for a
long time, however only the Maui scheduler was supported and the reservation
functionality was not enabled out of the box, conversely it required manual
integration. Especially the client side support was missing, making the feature
unusable without a dedicated development effort.

Since the version 6.5.1 of the UNICORE servers release (around the end of
2012), the resource reservations support was enhanced to support SLURM and
is integrated by default in the official UNICORE distribution. This work was
greatly influenced by the input and contributions coming from the PL-Grid Plus
project. At the same time the resource reservation control interface was added
to the UNICORE Command line Client (UCC).

The infrastructure is shown in Fig. 3.

UNICORE support for resource reservations is divided into two distinct parts:
reservations management support and submission of jobs to a reservation. This
approach covers a common situation where resource reservation functionality is
not directly exposed to end users and they can only submit jobs to reservations
created by the site staff or external tools.

UNICORE server side advertises for each Grid site whether it supports reser-
vations or not. For those sites supporting reservations, a user can create a reser-
vation, list owned reservations and delete some of the previously created. It is
worth to underline here that the complex reservation resources as CPUs, nodes or
duration are all specified using the same syntax as the resource requirements for
an ordinary UNICORE job. Therefore the user is not faced with the differences
between various schedulers.

Submitting a job to a reservation is a simple task: it is enough to set the
reservation identifier in the job’s resource requirements. While the reservations
management support is only available in the UCC client, the submissions of jobs
to reservations is available in both UCC and UNICORE Rich Client (URC).

12

UNICORE Command
Line Client

Create/list/cancel
reservation

Unicore/X

v

Target System Interface

UNICORE Command UNICORE Rich
Line Client Client

Submit Grid job
to a reservation

Unicore/X

v

Target System Interface

Support in a dedicated Support in the standard
l scheduler specific module l job processing pipeline
Maui/SLURM Maui/SLURM

Fig. 3. UNICORE resource reservation processing: management (left side) and usage
(right side)

Server side reservations handling is performed in a similar way to job pro-
cessing: the Unicore/X Web Service component is the site’s entry point talking
to clients. It forwards the requests to the Target System Interface (TSI) server
which maps an abstract Grid reservation related operation to something mean-
ingful to the scheduler being used. It should be noted here that the reservation
related operation, while similarly handled as classic job, has its own (simplified)
processing pipeline. This approach is probably correct taking into account the
fundamental lifecycle differences between a resource reservation and a Grid job,
however it also results in some limitations. Probably the most important one is
that the functionality of the UNICORE incarnation tweaker® subsystem is not
available for reservations.

The most significant contribution of the PL-Grid Plus project to UNICORE
resource reservations subsystem was a complete UNICORE TSI reservations
management module for SLURM. What is more the Maui module was updated
and fixed in several places.

The most difficult parts of reservations handling in UNICORE are related to
reservations accounting and authorization of reservation management. In the PL-
Grid Plus infrastructure we have decided not to include any of those functions
in the Grid layer. This decision was dictated by the fact that a direct access
to computing sites is generally possible, so the accounting and authorization

4 Incarnation tweaker is UNICORE server’s feature allowing for nearly unlimited in-
spection and modification of the submitted job. It is used to fix common mistakes in
job description, add site specific settings, enforce required options and finally trigger
additional actions for selected jobs.

13

must be anyway solved on the lower, resource scheduler layer. Still UNICORE
provides some integration points with respect to those issues. It is possible to
authorize reservation management operations on the Web Service level using the
standard UNICORE authorization policy. The limitation of this approach is that
the authorization is coarse grained: only the complete functionality access can
be controlled, it is not possible to authorize basing on particular reservations or
parameters (e.g. to ban reservations longer then a given value).

The accounting of reservations in UNICORE is not supported. The only
integration point is the TSI script which can be modified to invoke account-
ing operations. However, besides the statistical knowledge about the amount of
reservations made through UNICORE, the actual accounting of resource reser-
vations should be made on the scheduler level to accommodate all reservation
changes made externally to UNICORE.

We can conclude with the statement that our evaluation and deployment of
UNICORE reservations was successful. All the basic features are currently en-
abled in the infrastructure and we support both Maui and SLURM schedulers
which are deployed in PL-Grid. The generally available SLURM support in UNI-
CORE was contributed by the PL-Grid Plus project. Beside those achievements
we can also point out limitations of the solution: PBS Pro is not supported
while it is used by one of the PL-Grid infrastructure sites. There is no support
for higher, Grid-level reservations. Functionality to broker reservations (i.e. to
create them at any site fulfilling the given reservation resource requirements) is
missing and could improve the user experience as well as the support for co-
ordinated multi-site reservations. Nevertheless we can underline that the above
problems are rather minor, taking into account that not all sites in the infras-
tructure allows for the end user controlled resource reservation creation, due to
well known risks (related for instance to computational resource wasting).

5 Summary and Future Work

The functionality of advance reservation is very comfortable for the user. How-
ever, it should be used in efficient way in order to not waste resources at HPC
clusters. Thus usage of reserved resources is monitored and accounted. The user
negotiates with resource provider separately wall clock time to be spend on re-
served resources and total time in PL-Grid grant. The time spent in batch jobs is
accounted based on PBS standard logs. The accounting of reservations requires
additional logging. In Moab they are triggered by pre-agreed actions, e.g. reser-
vation ready, reservation removed. The next step would be integration of these
two sources of information about reservations and jobs (PBS logs and reserva-
tion logs) to avoid double charging user for jobs executed within reservation and
to charge user for an unused reservations.

References

1. Foster, 1., Kesselman, C., Lee, C.,Lindell, B., Nahrstedt, K., Roy, A.:A Dis-
tributed Resource Management Architecture that Supports Advance Reserva-

14

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

tions and Co-allocation”, In: Proceedings of the 7th International Workshop
on Quality of Service, London, UK (1999)

XSEDE project webpage, https://www.xsede.org/overview

Metascheduling Requirements Analysis Team report,
http://wuw.teragridforum.org/mediawiki/images/b/b4/
MetaschedRatReport.pdf

MacLaren, J.: HARC: The HighlyAvailable Resource Coallocator, In: Proceed-
ings of GADA’07, LNCS 4804 (OTM Conferences 2007, Part II), pp. 1385-1402,
Springer (2007).

Casajus, A., Graciani, R., Paterson, S., Tsaregorodtsev, A.: DIRAC Pilot
Framework and the DIRAC Workload Management System, Journal of Physics,
Conference Series 219, 062049 (2010)

The Grid Resource Allocation and Agreement Protocol Working Group; Global
Grid Forum, https://forge.gridforum.org/projects/graap-wg

VOMS home page, http://italiangrid.github.io/voms/

Guarise, A.: Policy management and fair share in gLite, HPDC 2006, Paris
(2006)

Argus Authorization Service:
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
Ferrari, T., Ronchieri, E.: gLite Allocation and Reservation Architecture,
EGEE JRAL technical report (2005) http://edms. cern.ch/document/508055
Job Description Language Atrribute Specification for the Workload Manage-
ment System, https://edms.cern.ch/file/590869/1/WMS-JDL. pdf

Bosak, B., Kopta, P., Kurowski, K., Mamonski, M., Piontek, T.. New
QosCosGrid Middleware Capabilities and Its Integration with European e-
Infrastructures in this PLGrid Plus Book

Bosak, B., Komasa, J., Kopta, P., Kurowski, K., Mamonski, M., Piontek, T.:
New capabilities in qoscosgrid middleware for advanced job management, ad-
vance reservation and co-allocation of computing resources - quantum chem-
istry application use case. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds) PL-
Grid, Vol. 7136 LNCS, pp. 40-55. Springer (2012).

Kurowski, K., Dziubecki, P., Grabowski, P., Krysiski, M.. Piontek, T., Szejn-
feld, D.: Easy Development and Integration of Science Gateways with Vine
Toolkit in this PLGrid Plus Book

HPC Basic Profile Version 1.0, http://wuw.ogf.org/documents/GFD.114.pdf
Troger, P., Rajic, H., Haas, A., Domagalski, P.: Standardization of an API
for Distributed Resource Management Systems. In: Proceedings of the Sev-
enth IEEE International Symposium on Cluster Computing and the Grid, CC-
GRIDO7, pp. 619-626, IEEE Computer Society, Washington, DC, USA (2007)
Distributed Resource Management Application API Version 2 (DRMAA),
http://wuw.ogf.org/documents/GFD.194.pdf.

Ben Belgacem, M., Chopard, B., Borgdorff, J., Mamonski, M., Rycerz, K.,
Harezlak, D.: Distributed multiscale computations using the mapper frame-
work. In: Alexandrov, V.N., Lees, M., Krzhizhanovskaya, V.V., Dongarra, J.,
Sloot, P.M.A. (eds) ICCS, Vol. 18, Procedia Computer Science, pp. 1106-1115.
Elsevier (2013)

Borgdorff, J., Mamonski, M., Bosak, B., Kurowski, K., Ben Belgacem, M.,
Chopard, B., Groen, D., Coveney, P.V., Hoekstra, A.G.: Distributed multiscale
computing with muscle 2, the multiscale coupling library and environment.
CoRR, abs/1311.5740 (2013)

15

20. Streit, A. et al.: UNICORE 6 Recent and Future Advancements, Annals of
telecommunications, Vol. 65, Issue 11-12, pp. 757-762 (2010)

