
New QosCosGrid Middleware Capabilities
and Its Integration with European

e-Infrastructure

Bartosz Bosak, Piotr Kopta, Krzysztof Kurowski, Tomasz Piontek,
Mariusz Mamoński†

Poznan Supercomputing and Networking Center
{bbosak,pkopta,krzysztof.kurowski,piontek}@man.poznan.pl

Abstract. QosCosGrid (QCG) is an integrated system offering lead-
ing job and resource management capabilities in order to deliver
supercomputer-like performance and structure to end users. By combin-
ing many distributed computing resources together, QCG offers highly
efficient mapping, execution and monitoring capabilities for a variety
of applications, such as parameter sweep, workflows, multi-scale, MPI or
hybrid MPI-OpenMP. The QosCosGrid middleware also provides a set of
unique features, such as advance reservation, co-allocation of distributed
computing resources, support for interactive tasks and monitoring of a
progress of running applications. The middleware is offered to end users
by well-designed and easy-to-use client tools. At the time of writing,
QosCosGrid is the most popular middleware within the PL-Grid infras-
tructure. After its successful adoption within the Polish research commu-
nities, it has been integrated with the EGI infrastructure and through a
release in UMD and EGI-AppDB it is also available at European level. In
this chapter we focus on extensions that were introduced to QosCosGrid
during the period of the PL-Grid and PLGrid PLUS projects in order
to support advanced user scenarios and to integrate the stack with the
Polish and European e-Infrastructures.

Keywords: grid computing, middleware, advance reservations, co-
allocation of resources, application monitoring, notifications

1 Introduction

In the last years, there have been identified two distinctive groups of end users
interested in obtaining efficient access to computational resources belonging to
the national- or European-level e-Infrastructures such as PL-Grid and EGI. Both
groups of users differ primarily in their experience in running jobs on HPC clus-
ters and thus they expect different kinds of tools tailored to their needs, habits
and aforementioned levels of experience. The first group consists of researchers



usually having computer science background and familiar with cluster solutions.
They expect command-line tools similar to these known from queuing systems,
but offering access to all resources of e-Infrastructure. The second group con-
sists of domain-oriented researchers, who have not yet used clusters but who are
willing to migrate from their desktop systems and to take full advantage of HPC
computing. These users want to solve bigger instances of problems or to paral-
lelize the execution of numerous application runs. They require intuitive tools
resembling the tools they are accustomed to and braking the technology barrier
associated with the migration to the grid environment, in order to exploit them
in their daily work.

To support the two groups of users the QosCosGrid (QCG) middleware, de-
veloped in Poznan Supercomputing and Networking Center (PSNC), delivers an
advanced multi-layered e-Infrastructure which successfully integrates primary
and brand-new services and tools capable of dealing with various kinds of com-
putationally intensive simulations. Recently, all these services and tools were in-
tegrated with European e-Infrastructure, and were made available through the
EGI distribution channels, like Unified Middleware Distribution (UMD) [32] and
EGI Applications Database (AppDB) [25] for the research communities outside
PL-Grid.

Within this document we present new capabilities of the QosCosGrid mid-
dleware developed in the time frame of the PLGrid PLUS project that extend
the core functionality described in [8]. The document focuses on extensions pro-
vided to the basic QCG services as well as it describes several recently developed
components that support new user scenarios and integrate QCG solutions with
the Polish and European e-Infrastructures.

The remaining part of the chapter is organized as follows: Section 2, Related
Work, provides a brief overview of existing grid middleware and available end
user tools. The main objectives underlaying the QosCosGrid middleware are pre-
sented in Section 3. Section 4 presents a high-level architecture of QosCosGrid
along with a short description of its main components. In the next section we out-
line new features of the middleware, i.e. application scripts, improved brokering,
advance reservation, co-allocation of resources and support for notifications. Sec-
tion 6 describes the main QosCosGrid client tools, namely QCG-SimpleClient
and QCG-Icon, and introduces concepts of QCG-Data and QosCosGrid Sci-
ence Gateway. The next section reports the status of the integration process of
QosCosGrid middleware with the EGI infrastructure. Finally, a general discus-
sion on the outcomes achieved so far and the plans for future development of
the middleware are addressed in Section 8.

Acknowledgement

This publication was published as a part of the eScience on Distributed Com-
puting Infrastructure book. The final publication is available at http://link.

springer.com/chapter/10.1007%2F978-3-319-10894-0_3



2 Related Work

The QosCosGrid is one of several advanced middleware distributions deployed
on e-Infrastructures. Although each middleware provides an exhaustive set of
functions required to efficiently run advanced simulations, the decision to select
a particular system for grid calculation is complex as it usually entails the way
how the scientific work will look like during a long period of time. Middlewares
differ in complexity, applied technologies, offered functions as well as in character
of end user tools. In some cases, small differences may cause serious problems or
bring significant benefits in the future.

Undoubtedly, each of middlewares has its loyal users, who historically or/and
politically started to built their application scenarios based on specific environ-
ments and have no reason to change the selected system. A clear example may
be the gLite framework massively exploited by the community associated with
CERN LHC for their simulations. [17] Other groups of users, connected by spe-
cific projects, requirements or geographical location decided upon different mid-
dleware technologies, e.g. UNICORE [4][5], ARC [16] or SAGA [31]. It is worth
noting that the support for advance reservations and co-allocation of resources is
not a common functionality and is available only in few middlewares by adoption
of specialized frameworks, such as HARC [18] or GridARS [22].

In turn, a number of various client programs that allow running compu-
tations using one or many middleware systems is relatively large. Usually, a
middleware introduces its own command-line tool(s), e.g. UNICORE provides
UNICORE CommandLine Client [21], gLite provides its Command Line Inter-
face [17], but often it also offers dedicated GUI applications, like UNICORE
RichClient [11]. There are also advanced programs, capable of submitting jobs
to many middlewares, such as Migrating Desktop and gEclipse [19]. A differ-
ent group of high-client tools includes web solutions, e.g. GridSpace2 [10] or
science-gateways [12].

To help users select the optimal middleware, the work [8] provides basic
comparison of the QosCosGrid middleware with gLite and UNICORE.1

3 Goals of QosCosGrid

The QosCosGrid (QCG) middleware could be seen as a system that hides the
complexity of many heterogeneous computing resources behind a single, intuitive
and user-friendly interface. However, the functionalities offered by QosCosGrid
are not simply limited to a direct mapping of particular functions available in
queuing systems into the well-designed interface at a grid level. The aim was to
design and implement a system driven by real requirements and expectations
of researchers. Therefore, from the beginning, the development of QCG services
and tools is carried out in a close collaboration with research groups representing
various domains of science. This resulted in developing a system adjusted to

1 The comparison presents state for year 2012



specific needs and habits of scientific users, and provisioning functions often
unavailable in queuing systems and other grid middlewares. The list presented
below outlines only some of them:

– “intelligent” brokering capabilities,
– support for advance reservations,
– co-allocation of heterogeneous computing resources,
– cross-cluster execution of jobs,
– support for multiscale computing,
– support for interactive tasks,
– flexible monitoring capabilities,
– intuitive command-line tools,
– user-friendly graphical interfaces.

The particular features of QosCosGrid are described in details in next sections.

4 High-level QosCosGrid Architecture

Basically, the QosCosGrid middleware consists of two logical layers: grid and lo-
cal one. Grid-level services control and supervise the whole process of execution
of experiments which are spread among independent administrative domains.
One administrative domain represents a single resource provider (e.g. data cen-
ter) participating in a certain grid environment by sharing its computational
resources. The main component of a grid layer is the QCG-Broker metaschedul-
ing service whereas QCG-Computing services play the main role at a local level.
We present the overall architecture of QosCosGrid system in Figure 1.

QosCosGrid components, with respect to their function and placement in the
architecture, may be divided into several groups marked on the left side of the
diagram. On that basis, the description presented below aims to summarize the
role of particular items building the whole QosCosGrid environment.

Infrastructure
QosCosGrid realizes an access to computing resources using LRMS/batch
systems (e.g. Torque or SLURM). The integration between QCG services,
i.e. QCG-Computing, and the underlying batch system is provided with the
use of the DRMAA interface [23].

Applications and tools
The QosCosGrid middleware is able to run practically every application in-
stalled on resources, including cross-cluster applications based on MUSCLE,
MPI or ProActive libraries. In order to simplify the way of running popular
applications, the middleware provides a number of scripts and tools that
wrap certain commands.

Cluster-level services
At a cluster level, or more generally - local administrative level, QCG is
represented by QCG-Computing, QCG-Accounting and QCG-Notification
usually deployed together on access nodes of batch systems.



Fig. 1. The high-level architecture of QosCosGrid

QCG-Computing is a core service that provides a remote access to task
submission and advance reservation capabilities of local batch systems via
interface compatible with the OGF HPC Basic Profile specification [27]. As
mentioned earlier, the QCG-Computing service is integrated with the under-
lying queuing system using the DRMAA interface. QCG-Computing offers
basic file transfer mechanisms utilized by QCG-Icon and includes built-in
information service that provides QCG-Broker with comprehensive dynamic
information about the current cluster status.
QCG-Accounting is a tool that publishes usage records to the external ac-
counting systems. Until now, it has been integrated with the three account-
ing systems, i.e. EGI accounting system called APEL [15], the PL-Grid one
called BAT [8] and the Grid-SAFE [26].
QCG-Notification plays the role of the main asynchronous message bus be-
tween the services, applications and end users. It is deployed at both local and
grid level. The service supports the topic-based publish/subscribe pattern for
message exchange defined by the Oasis WS-Notification standard [30]. QCG-
Notification is capable of sending notifications using a variety of transport
mechanisms, including HTTP/HTTPS, SMTP (e-mail) and XMPP protocol.



Grid-level services
The group of grid level components, in addition to QCG-Notification, in-
cludes two additional services, namely QCG-Broker and QCG-Monitoring.
QCG-Broker controls, schedules and generally supervises the execution of
tasks, including preparation of the execution environment and transferring
the results. This key service is based on dynamic resource selection, mapping
and advanced scheduling methodology, combined with the feedback control
architecture. It operates within a dynamic grid environment and deals with
resource management challenges, e.g. load-balancing among clusters, remote
job control or file staging support.
QCG-Monitoring is a new grid-level service built on top of the QCG-
Notification system. It offers end users a possibility of monitoring a progress
of the application execution in a dedicated web portal. After processing, the
application progress is displayed in a graphical way as a set of tables and
charts in accordance with the selected predefined template.

User tools
Capabilities of the QosCosGrid middleware are offered to end users by
means of a number of client-tools, including command-line interface: QCG-
SimpleClient, desktop GUI programs: QCG-Icon, and QCG-Data, mobile
application: QCG-Mobile, as well as high-level web-based solutions like
GridSpace2 [6][10] and QCG-ScienceGateway [12].

The detailed description of the core QosCosGrid services can be found in [8].

5 Primary QosCosGrid Functionalities

The objectives of the PL-Grid and PL-Grid PLUS projects have been defined
in a way to significantly improve the collaboration between the QosCosGrid de-
velopers, end users and computing resource representatives. Owing to the given
opportunities, it was feasible to organize frequent talks and discussions in order
to improve the middleware, to prepare requested extensions and to implement
better client tools. Within this section we present several functionalities of QCG
developed primarily under the umbrella of the PL-Grid/PLGrid PLUS projects.

5.1 Application Scripts

Making application submission a transparent process and hiding its details from
the user, regardless of where the application actually runs, was one of the foun-
dations of grid computing. However, meeting this requirement implies operat-
ing within unavoidable heterogenity of resources composing the grid system by
the grid middleware. The same application can be installed in various locations
on different systems. Moreover, the scratch file system locations can also differ
among the systems and the way how the application is spawned may not be
the same. Some of these problems can be solved with the help of Environment
Modules [13], however, the module/environment variables’ names may not be



coherent among the sites. For this reason, QosCosGrid introduces an extra layer
of computational resources with the abstract notion of an application. Within
this approach an application name (e.g. GROMACS) is mapped locally to the
full path of an application’s wrapper script. The wrapper script handles appli-
cation execution, i.e. it loads a proper module, if needed, changes to scratch
directory, spawns application and removes temporary files after the application
terminates. For some applications, like Gaussian, the input file is automatically
preprocessed so that the number of application’s threads and maximum avail-
able memory are set accordingly with resources that were allocated to the job.
What is worth mentioning, in QosCosGrid, we separated the script logic (which
is global and updated periodically) from the script configuration (which is local).

5.2 Improved Brokering Capabilities

When submitting jobs to the grid environment, users expect that their applica-
tions will be started on a proper class of worker nodes and will provide results as
quickly as possible. In the case of the QosCosGrid stack, the realization of this
need is a part of a functionality of a specialized service called QCG-Broker. The
service assigns jobs to clusters in a way that minimizes the time in which jobs
stay in queues waiting for resources. The decision to which cluster should be
submitted a job is made based on a current status of the whole system returned
by all currently active instances of QCG-Computing services. The brokering al-
gorithm implemented in QCG-Broker includes two logical steps. In the first step,
clusters that do not meet user or system requirements are excluded from the list
of potential sites. To be accepted, a cluster has to meet all verification criteria
including, among others, accessibility for a given user and grant, presence of
a sufficient number of nodes of requested characteristic, presence of requested
applications and software modules, or support for advance reservation. The clus-
ters that passed the first step of the verification are graded. This evaluation is
performed on the basis of the weighted sum of a set of metrics calculated for
every cluster. An extensive list of plug-ins with configurable weights allows an
infrastructure administrator to tailor the brokering policy to the specific sys-
tem and to assign tasks to resources in the way that satisfies users (job owners)
and meets their application requirements as well as takes into consideration con-
straints and policies imposed by other stakeholders, i.e. resource owners and grid
administrators.

Table 1 presents the subset of possible grading plug-ins with their defaults
weights.

5.3 Advance Reservation and Co-allocation of Resources

The QCG middleware, to the best of our knowledge, as the first one, has of-
fered advance reservation capabilities in a production environment. Advance
reservation mechanism is exploited to provide end users with the following func-
tionalities: reservation of resources to guarantee requested quality of service and
co-allocation of distributed heterogeneous resources to synchronize execution of



Table 1. QCG-Broker scheduler plugins

Plugin name Default Weight Description

RandomGrading 2 grades clusters in a random manner
SlotGrading 10 grades cluster based on free

slots/total slots ratio
FreeNodeGrading 10 prefers clusters with more com-

pletly free nodes
NodesNumberGrading 1 prefers clusters with higher number

of nodes
QueuesGrading 5 takes into consideration ratio be-

tween running and pending jobs
WaitingTimeGrading 5 grades cluster based on average

waiting time of all already started
jobs present in the system

LRUGrading 3 Last Recently Used - prevents sub-
mitting all jobs to a single cluster

cross-cluster applications. QCG can automatically search, within a user-defined
time window, for free resources for a requested period of time. Within QCG, it
is possible either to reserve a given number of slots on any number of nodes or
to request for a particular topology by specifying a number of nodes and slots
per node. At present, advance reservations can be created and managed using
either command-line tools (the QCG-SimpleClient client) or graphical, calendar
like, web application (the reservation portal called QCG-QoS-Access) presented
in Figure 2. Currently, in QCG, advance reservations are created by calling the
LRMS scheduler commands directly, while in the future a leverage of Advance
Reservation API of Open Grid Forum DRMAA 2.0 specification [24] is planned.
An extensive summary characterizing the concept of advance reservations can
be found in Chapter [CROSS-REF to the article about reservations]

The QosCosGrid’s support for advance-reservation and co-allocation of var-
ious types of resources provides a good opportunity to create complex scenar-
ios consisting of many demanding application modules. Within the MAPPER
project [3], the QosCosGrid stack has been integrated with Multiscale Coupling
Library and Environment (MUSCLE) [7] which enables cross-cluster execution
of so-called multiscale applications. The common multiscale application consists
of a number of single-scale modules that calculate some phenomena at different
spatial or temporal scales and simultaneously exchange information with one
another. Since the elementary modules can be written in different languages and
have different resource requirements, the QosCosGrid ability to combine many
clusters into the single virtual machine is crucial.

5.4 Application Status and Progress Notifications

Time needed to perform a simulation can differ in the cases of various input pa-
rameters and data, but even for the same ones, it can be unpredictable in complex



Fig. 2. The QCG-QoS-Access - Reservation Portal

and heterogeneous environments. Within the PL-Grid, for example, the waiting
time needed to start a job can be dependend on the current load, while the ex-
ecution time may be associated with the worker-node and processor type. This
non-deterministic relation might be an obstacle for end users who often need to
know in advance when they can expect results or which percent of the simulation
has already been performed. Moreover, especially for long-running simulations,
it is important to know if the execution is performed properly and if produced
partial results are correct in order to avoid aimless consumption of resources.
Taking into account the above needs, the QosCosGrid middleware provides spe-
cial notification capabilities. With the help of the QCG-Notification service and
its support for e-mail and XMPP protocol, as well as QCG-Monitoring function-
ality, changes in application execution may be immediately reported to interested
parties.

Users are provided with two basic types of notifications, respectively:

1. Notifications of a job status — users may register for obtaining e-mails or
XMPP messages informing about a current status of their jobs (e.g. PEND-
ING, RUNNING, FINISHED); whenever the job changes its state, the cor-
responding notification is generated and sent.

2. Notifications with an application’s excerpt — users can also be provided with
monitoring data consisting of a certain application’s output, i.e. when a given
phrase appears in the output file (e.g. ”ENERGY=500“) of the application,
the system generates appropriate notification. The application’s excerpt no-
tifications may be sent directly to users via e-mail or XMPP protocol, or
alternatively, forwarded to the QCG-Monitoring service that is described
later.

The procedure of the registration on notifications is simple and is performed
with the use of the QCG command line client. The syntax of QCG-Simple pro-



vides several intuitive directives which, if used, impose flow of certain types of
notifications to the specified recipient.

Dedicated Monitoring Solutions
To address specific needs of users, the QCG-Monitoring service was designed
and deployed on the top of the QCG notification system. The service offers end
users a possibility of monitoring the progress of an application execution in a
dedicated web portal. The application progress is displayed in a graphical way
in a form of a set of tables and charts in accordance to the predefined template.
Users can select from a set of general-purpose templates, they can also utilize
templates for quantum chemistry and astrophysics applications that have been
prepared in cooperation with domain-oriented researchers. The Figure 3 presents
the visualization of energy changes in an example Gaussian simulation.

Fig. 3. The QCG-Monitoring portal

Mobile phone and tablet users may benefit from other QCG application called
QCG-Mobile which is available for the Android system. This application makes
use of XMPP notifications and may be helpful in simple tracking jobs, especially
when users do not have an access to theirs PC’s.

6 End User Access Tools

In this section we describe the most popular client programs used by QosCos-
Grid users within the PL-Grid infrastructure, i.e. QCG-SimpleClient - a set of



command-line tools, largely appreciated by the group of existing batch’s sys-
tems’ users, and QCG-Icon - a desktop GUI application suitable for users who
have no particular knowledge about clusters or require a handy tool for ac-
cessing large computing resources. This section also presents our recent imple-
mentation, namely QCG-Data, as well as it shortly characterizes the concept of
QCG-ScienceGateway.

6.1 QCG-Simple Client

The QCG-SimpleClient is a tool recommended for all users who do not require
advanced capabilities of the QCG middleware like workflows, parallel jobs with
topologies or parameter sweep jobs which functionality is usually supported by
domain-oriented, dedicated web-based QCG-ScienceGateways. In return, QCG
client offers an access to the most frequently used functionalities in a very simple
and intuitive way. The QCG-SimpleClient is a set of command line tools, inspired
by the simplicity of batch system commands. The tools are dedicated for end
users familiar with queuing systems and preferring command line prompt over
graphical interfaces. Learning effort needed to start using QCG-SimpleClient is
relatively small as commands are modeled in a way similar to the ones known
to users from batch systems. The commands allow user to submit, control and
monitor a large number of various types of grid batch jobs as well as to reserve
resources to obtain requested quality of service. The full list of qcg-* commands
is presented below with separation into three groups related to tasks, reservations
and state of the system, respectively.

Submission and control of tasks:

– qcg-cancel - cancel task(s),
– qcg-clean - clean the working directories of given tasks,
– qcg-connect - connect with an interactive session to the task,
– qcg-info - display detailed information about the given tasks,
– qcg-list - list tasks in the system,
– qcg-peek - display ending of (stdout, stderr) streams,
– qcg-proxy - create a user proxy certificate,
– qcg-refetch - retry/repeat the transfer of output files/directories,
– qcg-refresh proxy - refresh the user proxy certificate for the given tasks,
– qcg-resub - resubmit the task to be processed once again,
– qcg-sub - submit the task to be processes by QCG services.

Resources reservation and control:

– qcg-rcancel - cancel reservation(s),
– qcg-reserve - reserve resources,
– qcg-rinfo - display information about the given reservation(s),
– qcg-rlist - list reservations in the system.



System information:

– qcg-offer - provides information about current state of resources including
their availability and supported applications.

Every task submitted to the system has to be described in a formal way. The
default description format - QCG-Simple, is recommended and sufficient for ma-
jority of the tasks. The format does not yet allow users to describe more sophisti-
cated scenarios like workflows, parameter sweep tasks, parallel tasks with topolo-
gies and these are supported by the XML-based format, called QCG-JobProfile.
The QCG-Simple format description file is a plain BASH script annotated with
#QCG directives, which is also a common approach for all nowadays queuing
systems. The #QCG directives inform the system how to process a task (e.g.
define resource requirements and input/output files for running an application).
The main difference is that a user has to explicitly specify all files and directories
that have to be staged in/out as there is no global shared file system for all sites.
Fortunately, staging directives also accept short relative local paths beside the
full URLs. Listing 1 presents an example of QCG- SimpleClient job description
expressed in the QCG-Simple format. In this example, the NAMD application
will be executed with the apoa1/apoa1.namd argument on the hydra cluster with
the topology: 12 processes on a single node in the plgrid queue with the walltime
limit set to 10 minutes. Prior to the execution, the apoa1.zip file will be staged in
and unpacked. After the execution, the whole working directory of the task will
be staged out to the results directory, that will be created in the directory from
which the task was submitted. Moreover, standard output and error streams will
be staged out to the apoa1.output and apoa1.error files, respectively. XMPP no-
tifications concerning status of the task will be sent to tomasz.piontek@plgrid.pl
and additionally, every 20 seconds, the application output will be searched for
new line containing the ENERGY word which, if present, is sent to the defined
mail address.

One of the most frequently requested functionalities that have been recently
added to the QCG-SimpleClient is the support for interactive tasks. Depending
on particular needs, a user can get an interactive access to the cluster and ei-
ther run his command line application in the interactive mode or compile their
own code and process some test/debugging sessions. The support for this func-
tionality is especially important in the case of systems that do not provide an
interactive access at a queuing system level and offer entry only via middleware
services.

In the last years we have learned how valuable it is for a user to obtain a
detailed status of her/his simulations. Having an access to the data produced
only at the end of the job can be accepted in the cases of very short runs only.
For this reason, QCG offers a possibility of viewing output of any of its running
jobs. Moreover, it is possible to establish an interactive session (using qcg-connect
command) with an already started batch job. After such an interactive session
has been established, a user can inspect the task, for example: list job directory,
view any file or run ps/top commands to see if program is not hanging or swap-
ping memory. Moreover, many of these erroneous situations can be detected by



[frame=single]

#QCG note=NAMD apoa1

#QCG host=hydra.icm.edu.pl

#QCG walltime=PT10M

#QCG queue=plgrid

#QCG nodes=1:12:12

#QCG output=apoa1.output

#QCG error=apoa1.error

#QCG application=NAMD

#QCG argument=apoa1/apoa1.namd

#QCG stage-in-file=apoa1.zip

#QCG preprocess=unzip apoa1.zip

#QCG stage-out-dir=. -> results

#QCG notify=xmpp:tomasz.piontek@plgrid.pl

#QCG watch-output=mailto:tp@mail,20,ENERGY

Listing 1: An example QCG-SimpleClient submission script

observing dynamic job metrics displayed in the QCG tools, namely CPU effi-
ciency and memory usage. Another commonly asked question by end users is
“What time my job will start?”. The QosCosGrid services attempt to answer
this question by extracting this information from the local scheduler. Although
this is a best-effort metric, it provides a user with at least a rough estimation
of expected waiting time. Finally, what was mentioned in the previous section,
QCG enables registering for notifications with application’s output, i.e. when-
ever a given phrase appears in the output file, thus tracking the correctness of a
simulation execution.

The QCG-Broker service provides brokering capabilities and, based on infor-
mation about a current state of the whole system, it can assign a task to the
resource in a way that minimizes waiting time in local queues. As an alternative,
we provided users with the qcg-offer tool. It is a command-line tool that allows
regular users to generate queries about free resources available in the grid. The
tool, at a QCG-Broker level, leverages the fine-grained information provided by
the QCG-Computing services. It is possible to query a single site, to display a
full or aggregated view of cluster nodes or to filter resources based on available
memory, total/free number of cores, nodes attributes, etc. Listing 2 presents an
example output of qcg-offer. Users can later utilize this information and their
own experience to select a target resource adjusting job size and topology by
changing a number of requested nodes and/or slots per node. Moreover, the
qcg-offer tool is capable of searching for applications and environment modules
installed on all sites.

6.2 QCG-Icon

QCG-Icon is a desktop application written specifically for the Windows plat-
form, but also available for Linux and Mac OSX distributions. It was designed



[frame=single]
[plgpiontek@qcg ~]$ qcg-offer
HYDRA:
Summary:

Metric Name nodes/cores share
Total Resources: 279/5252 100%/100%

Up Resources: 264/4968 94%/94%
Used Resources: 141/2239 50%/42%
Free Resources: 82/1432 29%/27% (FreeNodes=2x2,63x12,5x16,11x48,1x64)

PartFree Resources: 117/2141 41%/40% (AvgFreeCoresPerNode=18)
Reserved Resources: 34/408 12%/07% (Utilization=0%)

GALERA:
Summary:

Metric Name nodes/cores share
Total Resources: 194/2688 100%/100%

Up Resources: 189/2628 97%/97%
Used Resources: 113/1333 58%/49%
Free Resources: 0/0 0%/00%

PartFree Resources: 0/0 0%/00% (AvgFreeCoresPerNode=0)
Reserved Resources: 151/2172 77%/80% (Utilization=61%)

Listing 2: An example of the qcg-offer output

to enable an access to selected applications installed on the computing resources
of the PL-Grid infrastructure, and is made available through the QosCosGrid
services. While developing QCG-Icon, the special emphasis was put on the fol-
lowing fact: using an application installed in the grid environment should be
as intuitive as using a locally installed application. At the moment, QCG-Icon
supports a large portfolio of applications, including MATLAB, R, NAMD, Gaus-
sian (also integrated with GaussView), GAMESS, Molpro, LAMMPS, Quantum
ESPRESSO, Crystal09, NWChem, GROMACS and CPMD. Any other applica-
tion can also be run as long as a proper BASH script is provided. Despite its
simplicity, QCG-Icon delivers most of the functionalities offered by the QosCos-
Grid stack, including parallel jobs, live output monitoring and providing online
statistics about the job resources usage. The overview of the QCG-Icon graphical
user interface is shown in Figure 4.

6.3 QCG-Data

The purpose of QCG-Data is provisioning efficient and intuitive synchroniza-
tion mechanisms for data exchange between a local user file system and the
e-Infrastructure. At a low-level, QCG-Data utilizes the iRODS middleware [20]
for data storage. The system is directly integrated with QCG-Broker as well
as with end user tools and it provides easy management of application input
and output files in the QosCosGrid environment. It consists of two layers which
make use of iRODS: server layer, which exposes links pointing to data chunks,
and the client one, which creates and makes use of those links. The server part
is built on the top of the jargon library [29], whilst the desktop application
that is integrated with a newest version of QCG-Icon, adapts and extends the
iDrop code [28]. The integration carried out between QCG-Icon, QCG-Broker



Fig. 4. The “Main” and “New Task” windows of QCG-Icon

and QCG-Data allows users to process jobs which require or produce large data
sets.

6.4 QCG-ScienceGateway

The advanced graphic and multimedia-oriented web interfaces designed for sci-
entists and engineers could change the way end users collaborate, deal with
advanced simulations, share results and work together to solve challenging prob-
lems. With the use of the enhanced version of the Vine Toolkit portal [12]
[CROSS-REF to the new article about science gateways], we created the plat-
form called QCG-ScienceGateway. The Gateway consists of a general part dis-
playing and monitoring computational resource characteristics as well as a set
of domain-specific web applications developed for certain complex system use
cases. Therefore, end users are able to use only web browsers to proceed with
their complex simulations with the use of grid and to exchange the results of
their studies with co-workers. Currently, QCG-ScienceGateway supports several
application scenarios covering such software packages as NAMD, Abinit, Quan-
tumEspresso, NWChem, LAMMPS, nanoMD, SIMPL and Anelli. An example
nanotechnology simulation is presented in Figure 5.

7 Integration with EGI Infrastructure

After a successful adoption of QosCosGrid solutions within the Polish research
communities, collaboration at the European level has commenced. The efforts
resulted in signing the Memorandum of Understanding with EGI (European
Grid Infrastructure) in November 20122. This document was an official step to-
wards a sustainable deployment of the QosCosGrid stack into the European grid

2 https://documents.egi.eu/secure/ShowDocument?docid=1350



Fig. 5. The sample QCG-ScienceGateway application

ecosystem. The collaboration concerned both: integrating the contributed QCG
software components into the operational infrastructure and conducting joint
dissemination activities. QosCosGrid services got their own types within EGI
and their instances were registered in Grid Configuration Database (GOCDB)
— a registry containing general information about the sites and services par-
ticipating in the production of the European e-Infrastructure. The QCG ser-
vices were also successfully integrated with the EGI Service Availability System
(SAM) and APEL accounting system [15], where they continuously publish re-
quested information. To support European research communities and end users,
dedicated QCG support unit was created in the structure of GGUS, that is
the EGI helpdesk. In September 2013, after meeting all mandatory require-
ments and a positive verification of all the core QosCosGrid components, the
stack became a part of the Unified Middleware Distribution (UMD) [32]. Sim-
ilarly, QCG end user tools became available in the EGI Applications Database
(EGI-AppDB) [25], which is a repository of tools ready to use within the EGI
infrastructure.

Moreover, on the basis of a collaboration between the MAPPER and PRACE
projects, the QosCosGrid middleware has been initially validated and accepted
for further installation on highly powerful supercomputers available in the
PRACE infrastructure. Preliminary installations of basic QosCosGrid services
were performed on SuperMUC, HECTOR and Huygens machines.

In August 2013, another Memorandum of Understanding was signed — be-
tween Poznan Supercomputing and Networking Center and BCC (Basic Coor-
dination Centre) of Ukrainian National Grid3. One of the major objectives of

3 http://infrastructure.kiev.ua/en/news/114/



this document is to “provide robust, well-designed, user-centric services to scien-
tific user” based on the QosCosGrid services. That will be the first QosCosGrid
deployment at such a scale outside Poland.

Quite recently, a LCAS/LCMAPS [2] based authorization plug-in has been
developed for the QCG-Computing service. This work enabled the QosCosGrid
middleware to support authorization mechanism based on the Virtual Organiza-
tion Management Support (VOMS) infrastructure [1]. Moreover, the QCG-Icon
application had to be extended to generate a VOMS proxy certificates when
configured for a non PL-Grid virtual organization. The newly developed ca-
pabilities facilitate the adoption of the QosCosGrid stack by existing Virtual
Organizations and resource providers. The first external Virtual Organization
which was integrated with the QosCosGrid services on selected resources was
Gaussian VO4.

8 Conclusions and Future Work

QosCosGrid is used on daily basis by many researchers in Poland from various re-
search domains, such as quantum chemistry [8], nanotechnology [12], metallurgy,
astrophysics and bioinformatics. It is currently the most popular middleware and
the first middleware in PL-Grid, taking into account the CPU hours consumed by
its users. Tasks controlled by the QCG stack consume, in average, 2 million core-
hours per month in total. Moreover, the QCG functions for advance reservations
and co-allocation of resources proved to be of particular importance for several
complex multi-scale applications developed within the MAPPER project [3][14].
These successes would not be possible without offering simple but powerful end
user tools and comprehensive end user support.

What attracts users to the QCG solutions is the fact that the development
of QCG tools and services is performed in a close collaboration with groups of
domain researchers and is driven by their real needs. The fact that all the afore-
mentioned QCG components are developed by a single group of programmers
from Poznan Supercomputing and Networking Center in short development cy-
cles causes that QCG can be adapted to specific requirements in a relatively
short time. To the best of our knowledge, QCG currently provides the most
efficient and powerful multi-user access to the job management and advance
reservation features compared to other existing grid middleware services. QCG
also offers unique functionalities and features, such as co-allocation of resources,
cross-cluster execution of applications with heterogeneous resource requirements
and communication topologies, interactive tasks, as well as asynchronous noti-
fications and monitoring capabilities. In order to meet emerging end user re-
quirements and sophisticated scenarios, QCG provides means by which different
e-Infrastructures like EGI, PRACE and EUDAT, as well as the GEANT one in
the future, can be bridged.

The continous and sustainable development of QosCosGrid in order to pro-
vide highest-quality product for existing and new users, remains a priority of

4 https://voms.cyf-kr.edu.pl:8443/voms/gaussian



Poznan Supercomputing and Networking Center. In the next few years, we plan
to proceed with further deployments of QosCosGrid on Polish and European
sites. We want to create extensions and improve current functionalities of the
middleware to support new and more demanding computing scenarios. Finally,
last but not least, we aim at rendering the use of e-Infrastructure as simple and
as user-friendly as possible.

References

1. Alfieri, R., Cecchini, R., Ciaschini, V., dell Agnello, L., Frohner, A., Gianoli, A.,
Lorentey, K., Spataro, F.: Voms, an authorization system for virtual organizations.
In: Grid computing. pp. 33–40. Springer (2004)

2. Alfieri, R., Cecchini, R., Ciaschini, V., Gianoli, A., Spataro, F., Bonnassieux, F.,
Broadfoot, P., Lowe, G., Cornwall, L., Jensen, J., et al.: Managing dynamic user
communities in a grid of autonomous resources. arXiv preprint cs/0306004 (2003)

3. Belgacem, M.B., Chopard, B., Borgdorff, J., Mamonski, M., Rycerz, K., Harezlak,
D.: Distributed multiscale computations using the mapper framework. In: Alexan-
drov, V.N., Lees, M., Krzhizhanovskaya, V.V., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS. Procedia Computer Science, vol. 18, pp. 1106–1115. Elsevier (2013)

4. Benedyczak, K., Stolarek, M., Rowicki, R., Kluszczynski, R., Borcz, M., Marczak,
G., Filocha, M., Bala, P.: Seamless access to the pl-grid e-infrastructure using
unicore middleware. In: Bubak et al. [9], pp. 56–72

5. Borcz, M., Kluszczynski, R., Skonieczna, K., Grzybowski, T., Bala, P.: Processing
the biomedical data on the grid using the unicore workflow system. In: Kaklamanis,
C., Papatheodorou, T.S., Spirakis, P.G. (eds.) Euro-Par Workshops. Lecture Notes
in Computer Science, vol. 7484, pp. 263–272. Springer (2012)

6. Borgdorff, J., Bona-Casas, C., Mamonski, M., Kurowski, K., Piontek, T., Bosak,
B., Rycerz, K., Ciepiela, E., Gubala, T., Harezlak, D., Bubak, M., Lorenz, E.,
Hoekstra, A.G.: A distributed multiscale computation of a tightly coupled model
using the multiscale modeling language. In: Ali, H.H., Shi, Y., Khazanchi, D.,
Lees, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS. Procedia
Computer Science, vol. 9, pp. 596–605. Elsevier (2012)

7. Borgdorff, J., Mamonski, M., Bosak, B., Kurowski, K., Belgacem, M.B., Chopard,
B., Groen, D., Coveney, P.V., Hoekstra, A.G.: Distributed multiscale comput-
ing with muscle 2, the multiscale coupling library and environment. CoRR
abs/1311.5740 (2013)

8. Bosak, B., Komasa, J., Kopta, P., Kurowski, K., Mamonski, M., Piontek, T.: New
capabilities in qoscosgrid middleware for advanced job management, advance reser-
vation and co-allocation of computing resources - quantum chemistry application
use case. In: Bubak et al. [9], pp. 40–55

9. Bubak, M., Szepieniec, T., Wiatr, K. (eds.): Building a National Distributed e-
Infrastructure - PL-Grid - Scientific and Technical Achievements, Lecture Notes
in Computer Science, vol. 7136. Springer (2012)

10. Ciepiela, E., Nowakowski, P., Kocot, J., Harezlak, D., Gubala, T., Meizner, J.,
Kasztelnik, M., Bartynski, T., Malawski, M., Bubak, M.: Managing entire lifecycles
of e-science applications in the gridspace2 virtual laboratory - from motivation
through idea to operable web-accessible environment built on top of pl-grid e-
infrastructure. In: Bubak et al. [9], pp. 228–239



11. Demuth, B., Schuller, B., Holl, S., Daivandy, J.M., Giesler, A., Huber, V., Sild, S.:
The unicore rich client: Facilitating the automated execution of scientific workflows.
In: eScience. pp. 238–245. IEEE Computer Society (2010)

12. Dziubecki, P., Grabowski, P., Krysinski, M., Kuczynski, T., Kurowski, K., Piontek,
T., Szejnfeld, D.: Online web-based science gateway for nanotechnology research.
In: Bubak et al. [9], pp. 205–216

13. Furlani, J.L.: Modules: Providing a flexible user environment. In: Proceedings of
the Fifth Large Installation Systems Administration Conference (LISA V). pp.
141–152 (1991)

14. Groen, D., Borgdorff, J., Bona-Casas, C., Hetherington, J., Nash, R.W., Zasada,
S.J., Saverchenko, I., Mamonski, M., Kurowski, K., Bernabeu, M.O., Hoekstra,
A.G., Coveney, P.V.: Flexible composition and execution of high performance,
high fidelity multiscale biomedical simulations. CoRR abs/1211.2963 (2012)

15. Jiang, M., Novales, C.D.C., Mathieu, G., Casson, J., Rogers, W., Gordon, J.: An
apel tool based cpu usage accounting infrastructure for large scale computing grids.
In: Data Driven e-Science, pp. 175–186. Springer (2011)

16. Krabbenhöft, H.N., Möller, S., Bayer, D.: Integrating arc grid middleware with
taverna workflows. Bioinformatics 24(9), 1221–1222 (2008)

17. Laure, E., Gr, C., Fisher, S., Frohner, A., Kunszt, P., Krenek, A., Mulmo, O.,
Pacini, F., Prelz, F., White, J., Barroso, M., Buncic, P., Byrom, R., Cornwall,
L., Craig, M., Meglio, A.D., Djaoui, A., Giacomini, F., Hahkala, J., Hemmer, F.,
Hicks, S., Edlund, A., Maraschini, A., Middleton, R., Sgaravatto, M., Steenbakkers,
M., Walk, J., Wilson, A.: Programming the Grid with gLite. In: Computational
Methods in Science and Technology (2006)

18. MacLaren, J.: Harc: The highly-available resource co-allocator. In: Meersman, R.,
Tari, Z. (eds.) OTM Conferences (2). Lecture Notes in Computer Science, vol.
4804, pp. 1385–1402. Springer (2007)

19. Palak, B., Wolniewicz, P., Plóciennik, M., Owsiak, M., Zok, T.: User-friendly frame-
works for accessing computational resources. In: Bubak et al. [9], pp. 191–204

20. Rajasekar, A., Moore, R., Hou, C.Y., Lee, C.A., Marciano, R., de Torcy, A., Wan,
M., Schroeder, W., Chen, S.Y., Gilbert, L., Tooby, P., Zhu, B.: iRODS Primer: In-
tegrated Rule-Oriented Data System. Synthesis Lectures on Information Concepts,
Retrieval, and Services, Morgan & Claypool Publishers (2010)

21. Streit, A., Bala, P., Beck-Ratzka, A., Benedyczak, K., Bergmann, S., Breu, R.,
Daivandy, J.M., Demuth, B., Eifer, A., Giesler, A., Hagemeier, B., Holl, S., Huber,
V., Lamla, N., Mallmann, D., Memon, A.S., Memon, M.S., Rambadt, M., Riedel,
M., Romberg, M., Schuller, B., Schlauch, T., Schreiber, A., Soddemann, T., Ziegler,
W.: Unicore 6 - recent and future advancements. Annales des Télécommunications
65(11-12), 757–762 (2010)

22. Takefusa, A., Nakada, H., Takano, R., Kudoh, T., Tanaka, Y.: Gridars: A grid
advanced resource management system framework for intercloud. In: Lambri-
noudakis, C., Rizomiliotis, P., Wlodarczyk, T.W. (eds.) CloudCom. pp. 705–710.
IEEE (2011)

23. Troger, P., Rajic, H., Haas, A., Domagalski, P.: Standardization of an API
for Distributed Resource Management Systems. In: Proceedings of the Seventh
IEEE International Symposium on Cluster Computing and the Grid. pp. 619–
626. CCGRID ’07, IEEE Computer Society, Washington, DC, USA (2007), http:
//dx.doi.org/10.1109/CCGRID.2007.109

24. Distributed Resource Management Application API Version 2 (DRMAA), http:
//www.ogf.org/documents/GFD.194.pdf



25. EGI Application Database (AppDB), http://appdb.egi.eu/
26. Grid-SAFE accounting framework, http://gridsafe.sourceforge.net
27. HPC Basic Profile Version 1.0, http://www.ogf.org/documents/GFD.114.pdf
28. iDrop - the client tool for iRODS, https://code.renci.org/gf/project/

irodsidrop

29. Jargon library for iRODS, https://code.renci.org/gf/project/jargon
30. OASIS Web Services Notification, http://www.oasis-open.org/committees/tc_

home.php?wg_abbrev=wsn

31. SAGA project, http://saga-project.org
32. Unified Middleware Distribution (UMD), http://repository.egi.eu/


